

REGIONE PIEMONTE

PROVINCIA DI NOVARA

PIANO REGOLATORE GENERALE COMUNALE

PROGETTO DEFINITIVO

Adozione Deliberazione Programmatica:

Delibera di Consiglio Comunale n. 3 del 30 gennaio 2009

Adozione Progetto Preliminare:

Delibera di Consiglio Comunale n. 86 del 28 novembre 2011

Approvazione Progetto Definitivo:

Delibera di C. C. n. del

Sindaco:

Dott.ssa Anna Tinivella

Assessore:

Rag. Pierfranco Mirizio

Segretario:

Dott.ssa Maria Luisa Perucchini

Responsabile del procedimento:

Geom. Morena Medina

Relazione Tecnica Integrazioni

Progettisti:

Dott. Geol. F. Grioni

Dott. Geol. M. Mazzetti

ELABORATO:

1a

PREMESSA

A seguito dell'incarico conferito dall'Amministrazione Comunale di Borgomanero si sono redatte le seguenti integrazioni, in ottemperanza a quanto richiesto in data 07.04.2004 durante l'incontro interdisciplinare di indirizzo e consulenza (II° riunione), D.G.R. n. 31-3749 del 06.08.01.

INDICE

CAPI	TOLO		PAG.
1	Мет	ODOLOGIA DELL'ANALISI IDROLOGICA	3
2	RILIE	EVO TOPOGRAFICO	4
3	Тіро	DLOGIA DEI CORSI D'ACQUA	9
4	MODELLIZZAZIONE IDRAULICA DEL T. AGOGNA		9
	4.1	Verifiche idrauliche	9
	4.2	Elaborazione dei dati pregressi	12

1 METODOLOGIA DELL'ANALISI IDROLOGICA

Lo studio svolto è stato condotto con la finalità di individuare e delimitare le aree interessate dai processi legati alla dinamica del reticolo idrografico, valutandone il livello di pericolosità, senza modificare i perimetri delle fasce P.A.I. tracciati lungo il T. Agogna.

L'analisi è consistita nella verifica delle condizioni idrodinamiche di deflusso dell'evento di piena duecentennale nei corsi d'acqua d'acqua pubblici presenti nel territorio comunale (T.Sizzone, R.Geola, T.Grua, T.Lirone, T.Agogna Vecchia) e del Torrente Agogna nel tratto compreso tra il ponte di Piazza Mazzini (PO005) e quello di via Pertini (PO008)

Lo scopo della modellizzazione è stato quello di:

- determinare i livelli di massima piena in rapporto alle quote spondali esistenti;
- u verificare l'estensione delle aree soggette ad esondazione;
- individuare le classi di edificabilità differenziate da riportare sulla Carta di Sintesi (all.n.12a e 12b), attribuendo alle classi II o III le aree caratterizzate da un tirante rispettivamente inferiore o superiore a 40 cm, come indicato dalla circolare P.R.G. 08/05/96 n.7/LAP.

Le simulazioni idrodinamiche sono state condotte in moto permanente per mezzo di un modello numerico costruito mediante il software ISIS della HR Wallingford, un codice di calcolo monodimensionale a differenze finite per la soluzione delle equazioni di De Saint Venant in sistemi fluviali ramificati a maglia aperta o chiusa.

Nel presente studio, è stato applicato secondo una schematizzazione "quasibidimensionale" che ha comportato, per il T. Agogna, l'introduzione di rami di deflusso in destra e sinistra idrografica, in corrispondenza dei punti i tracimazione.

Mediante i modelli, è stato possibile definire il profilo longitudinale idraulico duecentennale per ogni corso d'acqua indagato e ricostruire la delimitazione delle aree allagate, analizzando i franchi rispetto ai manufatti di attraversamento (limitatamente al T.Agogna) e al profilo topografico delle sponde.

Relativamente al T. Agogna, sono stati inoltre esaminati gli studi pregressi esistenti per il tratto di alveo compreso nel territorio comunale di Borgomanero, rappresentati dal PAI (completamento del primo "Piano-stralcio delle Fasce Fluviali" approvato con DPCM il 24/7/1998) e dal più recente studio commissionato dalla Provincia di Novara (Servizio Programmazione e Pianificazione del Territorio – Studio idrodinamico di dettaglio e messa a punto del Piano per l'assetto idrogeologico a scala provinciale dei Torrenti Agogna e Terdoppio – HYDRODATA S.p.A. – gennaio 2000).

2 RILIEVO TOPOGRAFICO

I dati geometrici utilizzati per la costruzione dei modelli idraulici sono stati desunti da:

n.41 sezioni trasversali lungo gli alvei dei corsi d'acqua esaminati, rilevate con strumentazione topografica di dettaglio e quote assolute ricavate da strumentazione di tipo GPS:

Bacino	N° SEZIONI IDRAULICHE
T. Sizzone	4
R. Geola	15
T. Grua	9
T. Lirone	2
T. Agogna Vecchia	6
T.Agogna	9

- n.3 sezioni in corrispondenza di ponti sul T.Agogna, ritenuti influenti dagli studi pregressi sul deflusso di piena, rilevati utilizzando sia rilievi di dettaglio che tecniche "speditive";
- un rilievo planoaltimetrico di dettaglio nell'area "golenale" ubicata in destra idrografica del T.Agogna, delimitata da via Pertini e da via Cureggio.

La numerazione delle sezioni trasversali è stata assegnata a partire da valle, con numerazione crescente verso monte, mentre gli attraversamenti sono stati indicati con il codice dell'opera previsto dal SICOD LT (Sistema Informativo Catasto Opere di Difesa).

Bacino	SEZIONE	PROGRESSIVA (m)
	SI4 – SI4'	2.837
T. SIZZONE	SI3 – SI3'	3.237
1. SIZZONE	SI2 – SI2'	3.727
	SI1 – SI1'	4.708
	GE15 – GE15'	954
	GE14 – GE14'	1.576
	GE13 – GE13'	1.863
	GE12 – GE12'	1.972
	GE11 – GE11'	2.513
	GE10 – GE10'	2.546
	GE9 – GE9'	2.778
R. GEOLA	GE8 – GE8'	3.725
	GE7 – GE7'	3.499
	GE6 – GE6'	3.806
	GE5 – GE5'	3.986
	GE4 – GE4'	4.274
	GE3 – GE3'	4.832
	GE2 – GE2'	5.889
	GE1 – GE1'	6.715
-	GR9 – GR9'	104
T CDUA	GR8 – GR8'	759
T. GRUA	GR7 – GR7'	1.261
	GR6 – GR6'	1.596

BACINO	SEZIONE	PROGRESSIVA (m)
	GR5 – GR5'	1.945
	GR4 – GR4'	2.074
T. GRUA	GR3 – GR3'	2.516
	GR2 – GR2'	3.286
	GR1 – GR1'	3.453
T. LIRONE	Ll2 – Ll2'	1.831
1. LIRONE	LI1 – LI1'	3.053
	AGV6 – AGV6'	837
	AGV5 - AGV5'	1.086
T. AGOGNA VECCHIA	AGV4 – AGV4'	1.750
1. AGOGNA VECCHIA	AGV3 – AGV3'	2.068
	AGV2 – AGV2'	2.328
	AGV1 – AGV1'	2.562
	AG9 – AG9'	1.400
	AG8 – AG8'	1.678
	AG7 – AG7'	2.017
	PO006	3.792
	AG6 – AG6'	3.905
T. A.	AG5 – AG5'	4.132
T. AGOGNA	PO007	4.220
	AG4 – AG4'	4.350
	AG3 – AG3'	4.480
	AG2 – AG2'	4.692
	PO008	4.753
	AG1 – AG1'	5.189

I rilievi topografici sono stati condotti utilizzando una stazione totale elettro-ottica Sokkia Set 4C, seguendo uno schema con stazioni unite in poligonali.

SPECIFICHE TECNICHE SOKKIA SET4C					
GENERALI	Sensibilità livelle	L. torica: 20"/2 mm L. sferica 10'/2 mm			
O EN EI VIEI	Piombino ottico	Ingrandimenti: 3 x Minima messa a fuoco: 0,5 m			
	Lunghezza	170 mm			
	Apertura obiettivo	45 mm			
TELESCOPIO	Ingrandimenti	30 x			
	Campo visivo	1°30′ (da 26 m a 1000 m)			
	Minima messa a fuoco	1,3 m			
	Campo di visualizzazione	Da 0°00'00" a 359°59'59"			
M ISURE ANGOLARI	Precisione	Deviazione standard della media delle misure prese in posizione CS e CD: 5"			
	Compensatore automatico	Liquido, sensore di verticalità biassiale			
MISURE DI DISTANZE	Portata Prisma standard APx1	Da 1.3 m a 1200 m			

Le misure rilevate sono state riferite ai seguenti capisaldi di riferimento, rilevati con strumentazione di tipo GPS:

CORSO D'ACQUA	CAPOSALDO	QUOTA m s.l.m.
T. AGOGNA	AG1	320,878
	AG2	299,893
	AG3	302,462

Corso d'acqua	CAPOSALDO	QUOTA m s.l.m.	
R. GEOLA	GE1	274,369	
R. GEOLA	GE2	276,788	
	GE3	283,528	
	GE4	285,705	
	GE5	291,241	
	GE6	295,058	
R. GEOLA	GE7	298,569	
	GE8	308,318	
	GE9	302,379	
	GE10	308,010	
	GE11	311,200	
	GR1	323,058	
	GR2	324,627	
	GR3	326,432	
T. GRUA	GR4	327,312	
	GR5	328,407	
	GR6	333,676	
	GR7	332,358	
Throug	LI1	293,152	
T. LIRONE	LI2	290,915	
	SI1	335,005	
T. S. 770.15	SI2	335,051	
T. SIZZONE	SI3	328,970	
	SI4	316,600	

3 TIPOLOGIA DEL CORSO D'ACQUA

Al fine di consentire la valutazione del coefficiente di scabrezza, in corrispondenza di ogni sezione topografica, sono stati rilevati i materiali che ne costituiscono l'alveo.

Si sono quindi assunti i seguenti valori del coefficiente di Manning (Marchi e Rubatta, 1981):

- □ alveo inciso (corso d'acqua naturale regolare corso d'acqua naturale con ciottoli e ghiaia): n = 0,025-0,030
- □ alveo inciso (pareti in muratura, in cemento, in pietrame): n: 0,013 0,018
- □ regione fluviale n = 0,050
- □ regione fluviale comprendente aree urbanizzate n = 0,011

4. MODELLIZZAZIONE IDRAULICA DEL T. AGOGNA

La modellizzazione dell'alveo in esame è stata effettuata adottando i seguenti criteri:

- verifiche idrauliche per il tratto di corso d'acqua urbano, compreso tra il ponte di Piazza Mazzini e Via Pertini;
- adozione, per la restante parte, delle quote idrometriche indicate nello studio commissionato dalla Provincia di Novara.

4.1 Verifiche idrauliche

L'analisi idraulica è consistita nella verifica delle condizioni di moto nel tratto del T. Agogna considerato e in corrispondenza di n.3 rami laterali in grado di convogliare le portate di possibile esondazione dal corso d'acqua principale, aventi la seguente distribuzione:

due rami in sinistra idrografica, con origine dai ponti di Piazza Mazzini e di Molino
 Torrione e sviluppo lungo il centro abitato (Viale Marconi);

un ramo in destra idrografica con origine dal ponte di Mulino Torrione e sviluppo in corrispondenza dell'area "golenale" compresa tra Via Cureggio e Via Pertini.

I dati geometrici utilizzati nel modello consistono complessivamente in n.16 sezioni:

- □ n.5 sezioni trasversali lungo l'alveo principale
- □ n. 3 sezioni speditive in corrispondenza di ponti
- n.8 sezioni ricavate dal rilievo rilievo planoaltimetrico dell'area golenale:

	SEZIONE	PROGRESSIVA (m)
	PO006	3.792
	AG6 – AG6'	3.905
	AG5 – AG5'	4.132
T. AGOGNA E RAMI LATERALI IN SINISTRA IDROGRAFICA, IN	PO007	4.220
CORRISPONDENZA DEL CENTRO ABITATO	AG4 – AG4'	4.350
	AG3 – AG3'	4.480
	AG2 – AG2'	4.692
	PO008	4.753
	1	88
	2	408
	3	452
RAMO LATERALE IN DESTRA IDROGRAFICA, IN CORRISPONDENZA	4	524
DELL'AREA GOLENALE DI M ULINO TORRIONE	5	568
	6	640
	7	680
	8	760

I risultati delle simulazioni sono riportati nelle successive tabelle:

Corso d'acqua	Sezione n.	Portata di massima piena q (m³/s)	Altezza idrica h (m)	Quota idrometrica H (m. s.l.m.)	Velocità V (m/s)
	AG6 – AG6'	300	3,27	303,80	6,31
	AG5 – AG5'	300	4,48	303,90	1,99
T. Agogna	AG4 – AG4'	200	3,55	302,39	3,22
	AG3 – AG3'	200	2,69	301,35	3,88
	AG2 – AG2'	200	2,36	300,00	6,69
-	AG6 – AG6'	70	0,18	302,80	4,74
Rami laterali in sinistra	AG5 – AG5'	70	0,57	303,70	3,95
idrografica, in corrispondenza	AG4 – AG4'	85	0,77	302,70	1,35
del centro abitato	AG3 – AG3'	85	0,33	302,13	2,01
	AG2 – AG2'	85	0,81	301,60	6,58
	1	85	1,16	302,400	4,07
	2	85	1,93	301,720	1,39
Ramo laterale	3	85	0,74	301,470	2,26
nell'area golenale, in	4	85	0,62	300,900	2,32
prossimità di Mulino	5	85	0,31	300,380	1,52
Torrione	6	85	0,36	299,860	1,30
	7	85	0,37	299,500	1,88
	8	85	0,40	298,820	2,21

	PONTI							
Sezione	Progressiva m	Quota idrometrica a monte m slm	Quota idrometrica a valle m slm	Intradosso m slm	Estradosso m slm	Franco m	Sormonto m	Portata defluente m³/s
PO006	3.792	306,70	305,79	304,55	305,95	-	0,75	300
PO007	4.220	305,65	302,30	303,07	304,50	-	1,15	200
PO008	4.753	301,27	301,20	302,85	304,70	1,65		200

Dai risultati delle elaborazioni idrauliche, si è evidenziato che alcuni settori di territorio risultano allagabili da un evento di piena con tempo di ritorno di 200 anni.

Le esondazioni sono provocate dalla presenza di attraversamenti con sezione inadeguata (PO006, PO007) oppure da altezze spondali non sufficienti a contenere un evento di piena duecentennale (AG4 – AG4').

In particolare, in corrispondenza dei ponti PO006 e PO007, esondano nei rami laterali ipotizzati portate pari rispettivamente a circa 70 m³/s e 170 m³/s, riducendo quindi il deflusso in alveo nelle sezioni di valle rispettivamente a circa 300 m³/s e 200 m³/s.

4.2 Elaborazione dei dati pregressi

Nella restante porzione di alveo compreso nel territorio comunale, sono state adottate le quote idrometriche riportate nello studio della Provincia di Novara, riferite alle seguenti sezioni trasversali: AG1 AG1', AG7 – AG7', AG8 –AG8' e AG9 –AG9'

Le diverse basi cartografiche utilizzate sono state compensate assumendo come riferimenti altimetrici le quote assolute degli estradossi dei seguenti ponti, riportate nello studio sopracitato:

CODICE SICOD	CODICE PSFF / PROVINCIA DI NOVARA	QUOTA ASSOLUTA DELL'ESTRADOSSO
PO001	126.P	328,70 m s.l.m.
PO002	124/A.P	317,05 m slm
PO005	122/A.P	307,65 m slm
PO006	122/B.P	305,95 m slm
PO007	121.P	304,50 m slm
PO008	120.P	304,70 m slm
PO009	118/A.P	299,00 m s.l.m.